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I. INTRODUCTION 

The stability analysis for a stratified fluid in a rotating coordinate system results 
in an eighth-order eigenvalue equation. For various limiting conditions, this 
equation can be reduced to a sixth-, fourth- or second-order eigenvalue equation. 
In particular, the fourth-order approximation for neutral stratification is the 
Orr-Sommerfeld (O-S) equation. The stratified Orr-Sommerfeld equation has 
been investigated numerically for convective instability and Couette flow (linear 
velocity profile) [l], and for Couette, Poiseuille (parabolic velocity profile) and an 
arbitrary velocity profile with an inflection point [2]. The mean flow considered 
here is the geophysical boundary layer solution for a balance between Coriolis 
and viscous forces. This solution yields a spiral velocity profile from the surface 
to the free stream velocity. The velocity profile confronted by the two-dimensional 
perturbation will depend upon the orientation, here defined as the angle to the 
left of the free stream velocity. These velocity profiles are shown in Fig. (1). Note 
that the velocity profiles exhibit a “strong” inflection point, since there is a large 
velocity gradient at the inflection point. This results in a well defined instability 
mode at low wavenumbers. 

The equations with these velocity profiles as parameters have been solved by 
finite ditferencing [3] and using the shooting method [4] with similar results. The 
relative merits of the two methods has been discussed by Gary and Helgason [5] 
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FIG. 1. Velocity profiles from a viscous-Coriolis force balance (Ekman layer) in a vertical 
plane at an angle l + 90” to the left of the geostrophic (free stream) velocity V, (Northern hemi- 
sphere). 

with emphasis on the matrix method employing the Q-R algorithm. In this paper 
we discuss the shooting method as applied to the second-, fourth- and sixth-order 
equations. 

The shooting method with a purification scheme as we have used requires a 
single, n-th-order differential equation. Assuming n boundary conditions at one 
boundary (generally complete smoothness at infinity), an eigenvalue can be 
guessed, the equation integrated, and the difference at the other boundary condition 
evaluated as a function of the eigenvalue. The roots of this functional relationship 
then define solution eigenfunctions which satisfy both boundary conditions. 

The conservation equations for a geophysical fluid in a rotating system produce 
the following set of equations when subjected to a two-dimensional simple harmonic 
perturbation; coordinate alignment such that a/ax = 0; linearization and non- 
dimensionalization with respect to L = (Km/Q sin 8)1/2, V, and t = LIVg . 
Km is the eddy viscosity, Q is the vertical component of the system rotation, V, is 
the geostrophic, or free stream velocity, and 8 is the latitude. 

ut+ Vu,-&,V,-2E#,-EV2u=0, 

#zt + V&, - &,Vz + 2Eu - E V2#z + ~1, = 0, 

A,t + Vh, - MIT - E V2& - pz = 0, 
(1) 

T, + VT, - t,h,(Tz + r) - (E/Pr) V2T = 0, 

where 

v = *z 9 w= -#, 3/ = stream function 

E = (2K,,$ sin 6)1/2/2Vg , r = (dc&IT)~ Pr = Km/K,, . 
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Here, E represents either the inverse of the Reynolds number or the Rossby 
number as they are not independent for a semi-infinite fluid. 

We introduce periodic solutions for U, # and T, and eliminate p by cross 
differentiation, 

* d 

11 11 

u = CL eia(y-ct) 
T 7 

(V - c) p - V’$b - E (p” - a2p) - g 4’ = 0 

(V - c) 7 - STc# - & (7” - a%) = 0 
(V - c) f - [V” + ayv - c)] 4 (2) 

- f (ry - 2&j” + a%$) + z p’ + p 7 = 0 

the stability, 4’ = a/az. 

While it does not appear to be possible to obtain a single equation in #J as the 
dependent variable, an eighth-order equation in T can be written in operator 
form. However, the expansion to coefficient form is cumbersome, and the chance 
of error is great. These considerations, in addition to the long computational 
times anticipated for the eighth-order integration, led to the investigation of the 
problem for limiting cases, hoping that the complete stability problem could be 
inferred from the stability solutions of the lower-order equations obtained when 
different terms in the basic set were neglected. Thus, a second-order equation is 
obtained by neglecting viscous and Coriolis forces, a fourth-order equation by 
neglecting Coriolis and stratification terms, and a sixth-order equation by neglecting 
the Coriolis terms only. The sixth-order set with the Ekman profile as a parameter 
and neglecting stratification terms was solved in [3]. 

The following eigenvalue equations with coefficients variable in V(z), Ri, 01, E 
and Pr are to be solved for eigenvalues c and eigenfunctions 4. We are particularly 
interested in the maximum growth rate, ((Yc&~~ . 

)02-a2--V”+ 
v-c 

(vyc)2/ 4=0, (3) 

1 (V _ c)(02 - 4 a2)2 - I/” - EcDzi; 1 4 = 0, (4) 

(V-c) - E(D2 - 01~) 
iaPr 1 

x 
[ 
(V-c)(D--d-V”-- E(D2iua2)2]+Ri[+=0, (5) 
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The solution method for the sixth-order equation is discussed. The fourth-order 
solution is similar, while the second-order solution is relatively simple. The results 
are then used to discuss the validity, and practicality of using the lower order 
equations. 

II. SOLUTION OF THE STRATIFIED ORR-SOMMERFELD EQUATION 

Governing Equation 

[ 
E(D2 - c~“) 

icvPr - (V - cl] 

x E(D2 - cx2)2 
[ 

- 
iol 

(V - c)(D2 - CL”) + v”] rj + R$ = 0 (6) 

Boundary Conditions 

Consider a solid wall maintaining constant temperature. 

$@> = b’(O) = 0, 

T’(0) = 0. 

In terms of 4, 

(7) 

[(E(D2 - u”)“/ia) - [V(O) - c](D” - a”) + V”(O)] 4 = 0 

When the coefficients of the stratified O-S Eq. (6) vary in the range of interest, 
no closed form solution exists. However, a numerical integration is possible over 
the interval. Far from the boundary, where the velocity V, and temperature T 
approach constant values, the O-S equation assumes the simple form 

p - (A,2 + A,2 + h32) p + (h,2h22 + h&2 + &2X,2) rjs” - h,2h22h,2~ = 0, 

where 
Al2 = 01~ + (iPr/E)(V, - c), 

h22 = a2 + (iol/E)(v9 - c), 
A22 = a2. 
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This differential equation of constant coefficients has six solutions expressible in 
terms of exponential functions 

& = e-A’“, & = eA1*, 

q$ = e+‘, $Q = eh2’, (8) 
y$ = e+‘, da = e@. 

If the solutions are to remain bounded as y + co, then dr , +3, and & are 
the only acceptable solutions. Since ~$r , 43, and & satisfy the O-S equation at 
the outer edge of the boundary layer, y = yO, a general solution can be expressed 
as a combination of these three solutions. Anticipating a numerical integration 
of the O-S equation from the outer edge of the boundary layer to the wall, y = 0, 
$1, 43 3 and & (which are solutions to the simplified O-S equation) are used to 
specify initial values for numerical integration of the O-S equation. Using these 
initial values, Eq. (6) is integrated (the Runge-Kutta method is used here) to 
find the most general solution. Initially, the solutions are linearly independent. 
However, as the numerical integration proceeds, this linear independence is 
observed to disappear rapidly. The difficulty here is that a computer carries only 
a specified number of significant digits plus an exponent when representing a real 
number. Therefore, from time to time, a truncation or round off error &e occurs. 
That is, at some integration step, say (v - h), where h is the step size, we have 

4cu - 4 = Cl f E. (9) 

At the next integration from (v - h) to (v - 2/z), the truncation error fc presents 
a suitable initial condition for obtaining the solution & and & . Hence the solution 
obtained at the end of this step of the integration is the sum of the three solutions 
$1, A, and A9 namely, d(v - 24 = ACu - W f 4~ - 24 f. •~5(~ - 24. 
This is because, at each integration step, the differential equation admits the 
more general solution based, e.g., on C#(Y - h) = c1 + c2 rather than the solution 
based on C$(Y - h) = c1 ; in the present case c2 = -&e. Since C& and & exhibit 
a much more rapid growth than does $r , the solution that started as $r is domi- 
nated by the term Tt+ 5 l & , if the integration proceeds far enough, and the 
linear independence of the three solutions is lost. The portion -&c$, and &.c& 
of the solution & is commonly referred to as the parasitic error. Since the growth 
of & and & increases as E decreases, the contamination of the #1 solution is more 
pronounced at lower E (higher Reynolds number). Therefore numerical solutions 
are limited as E gets small. 

Recently, Landahl and Kaplan [6] devised a purification scheme where, at 
each integration step, the slowly growing solution +I is purified from its parasitic 
error &c+, and e& such that at the end of the integration interval, & is not 
dominated by its parasitic error. The scheme was found successful in integrating 

581/10/r-8 
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the O-S equation at Reynolds number (Re = l/E) as high as 10 000. A different 
scheme based on a Gram-Schmidt orthagonalization has been suggested [7], and was 
found successful in obtaining solutions up to Reynolds number as high as 500 000. 

In the present investigation, the Gram-Schmidt process is adopted [8]. At 
the end of a certain integration step, after using the Runge-Kutta integration 
procedure with a step of .Ol, proceeding downward from the outer edge boundary 
layer, we obtain a value for each of the three solutions & , +3 , and & and their 
derivatives. Next we carry out the Gram-Schmidt process leading to the new 
orthonormal solution vectors r&0.99), $,(0.99) and &(0.99) where 

(10) c&0.99) = M.99) - [4,(0.99), m.99)1~5(0.99) 

I M.99) - [$,(0.99), &(0.99)1 $5(0.99) I ’ 

QO.99) = 4dO.99) - [dl(O.99), ~,(0.99)1&(0.99) - [$w.99), ~5(0.99)1&(0.99) 

I dl(O.99) - [dl(O.99), &(0.99)1$&(0.99) - [$MO.99), $5(0.99)1 qm99) I ’ 

where [di , 4d and I 4 I re P resent the inner product and magnitude. By carrying 
out the same linear transformation on the initial vector 

Ml.0) = 

1 
-O! 

a2 
-a3 

014 
-CX5 

? (63U.O) = > 45Cl.O) = 

1 
-Y 

d 

Y2 -Y3 Y4 
we found the new initial vectors which lead to the three orthonormal vectors 
61 9 $3 > and & . These initial conditions are 

II 
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X 

1 
--cy. 

012 
--CL3 

a4 
-Cd5 

(11) 

We integrate the O-S equation from y = 1 .O to y = 0.99 using as initial conditions 
at y = 1.0 the solution $i(l.O), $3(1.0) and &(l.O). The vectors so obtained are 
orthonormalized and so are the conditions at y = 1. Continuing in this way, 
we eventually find three initial vectors which are initial conditions for the 0-S 
equation leading to three orthonormal vectors at y = 0. In this way solutions 
of the O-S equation for which d( co) + 0 are accurately determined. 

III. RESULTS 

Second-Order Solutions 

The singular nature of the second-order equation, obtained in the limit E + 0 
prevents investigation in the region where V - c = 0. However, since the behavior 
of the solutions near the maximum growth rate region is primarily of interest, 
calculations were made in the region of a maximum growth rate mode known 
from a higher order solution. For the second-order equation, since the eigenvalues 
have a real part phase speed nearly equal to V at the inflection point, V” = 0, all 
of the terms are small, thereby increasing convergence prob1ems.l Nevertheless, 
qualitative effects, such as consideration of a variable Ri with vertical coordinate z 
could be investigated. When a two-layer Ekman case was run, with Ri = Rid at 
z < z, , Ri = Ri, for z > z, , the importance of Ri at the inflection point was 
evident, although the solutions were unstable near the critical height, z, = zi . 

The instability mode in the vicinity of the maximum growth rate was well 
behaved and displayed a definite peak to be compared with a higher order solution 
[Fig. (2)]. The eigenfunction magnitude and phase for the stable case are shown 
in Fig. (3). Although the second-order equations yielded a single well-behaved 
instability region, the neutral stability curve and the location of the maximum 
growth rate did not correspond well to the higher order solutions. 

1 Although the second-order equation is not singular at V = c, if the growth rate is finite, 
i.e., DLC$ # 0. 
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In order to remove the uncertainties involved in a singular perturbation solution, 
and to avoid the numerical problems arising in separating the discrete spectrum 
from the continuous spectrum for the singular second-order equation, the viscous 
term must be included (E finite), producing a fourth-order equation at least. 

a a 

FIG. 2. Stability diagram showing growth rates oici in the vicinity of DLC; mlLx from the second 
order approximation. The two-dimensional perturbation is oriented E + 90” to the left of the 
free-stream velocity. OL and oici are nondimensionalized with respect to characteristic depth L 
and free-stream velocity V, . 
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FIG. 3. (a) Typical eigenfunction solutions (vertical stream function shape) for near maximum 
growth rate conditions. The sixth-order solution is for small but finite E, the second-order solution 
is from E + 0 limit equations. (b) The vertical phase distribution of the eigenfunction. 
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Fourth-Order Solutions 

When the viscous terms are included, and the limits Ri -+ 0, Pr -+ co, considered, 
the fourth-order Orr-Sommerfeld equation is obtained. This equation is not 
singular, and admits neutral stability solutions. There is generally a single unstable 
mode, associated with the inflection point in the V(z) profile. Once a particular 
eigenvalue for this mode has been found, the behavior of the solution as a function 
of the variable coefficients may be conveniently investigated using the shooting 
method. For the neutrally stratified fluid with an Ekman velocity profile, the 
unstable mode associated with the inflection point is the only unstable mode. 
The neutral stability curve for this mode is produced in Fig. (4). The fourth-order 
results were all reproduced by the sixth-order equations in the Ri -+ 0 limit. 

a 

-10 0 10 Ra = 0 

FIG. 4. Same as Fig. 2 except from the fourth-order solution for small E. 

Sixth-Order Solutions 

When the stratified fluid is considered, it is necessary to consider a sixth-order 
equation to avoid the singular second-order equation. There now exists the 
possibility of a convective (Rayleigh type) instability mode in addition to the 
dynamic mode. Since we are primarily interested in the inflection point mode, 
and the solution differences in the approximate equations, the effect of the addi- 
tional parameter Ri upon this mode only was surveyed. The sixth-order solutions 
for variable Ri(z) collaborate the second-order solutions, while yielding numerical 
solutions close to the critical layer due to the damping effect of the higher order 
terms. Figure 5, which shows the sixth-order results indicating the importance 
of Ri at the inflection point was also obtained from the second-order equations 
except the critical layer values were not damped and the magnitudes of c were 
different. Since the basic instability mechanism is of an inviscid nature, i.e., it is 
associated with the inflection point of the velocity profile, it was essentially inde- 
pendent of Pr or E for E < .002. 
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The sixth-order eigenvalues converge well to the fourth-order solution for 
Ri --+ 0. The growth rates at a moderately unstable Ri = -.004 are shown in 
Fig. (6). The eigenvalue magnitudes and phase are given in Fig. (7a,b), for repre- 
sentative parameters. The eigenvalues and eigenfunctions are insensitive to small 
variations in E, cx or E relative to Ri variation. 

0.05 
t 

6’0 Ri=O.;z>r c 
(I’ 0.5 i 

CONVECTION HEIGHT, zt 

FIG. 5. Growth rates for two-step stratification, Ri = 0, +0.002, &0.005, -0.01 for z -< z, , 
Ri = 0 for z > z, . Rilocal at the inflection point. 

a 

Ri =-.004 
Re= 900 
E = .oo I 
Ro= 4660 

FIG. 6. Same as Fig. 2 except from the sixth-order solution for moderately instable strati- 
fication. 
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FIG. 7. (a, b) Same as Fig. 3, except sixth-order solutions for various stratifications. 

60, , ( / ! , , / 

FIG. 8. Neutral stability curves for various stratifications as a function of orientation (4 
and Re(l/E), inflection point instability. 

The effect of stratification upon the neutral stability curve for E us Reynolds 
number (inverse of E) is shown in Fig. (8) for the rotating boundary layer profiles. 
The maximum growth rates occurred very close to 01 = .5 in the range of E, Ri 
and Re shown. The Coriolis term (requiring the eighth-order solution) can be 
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expected to become significant at very low Re < 100, further reducing Re mini- 
mum. The growth rates as a function of E and Ri at supercritical E are shown in 
Fig. (9), with local Ri given by dashed lines. The variation of E for maximum 
growth rate as a function of Ri is evident from this graph. Figure 10 shows the 
stratification effect on the Tollmein-Schlicting waves for a Blasius profile. 

FIG. 9. Neutral stability and growth rate curves as a function of orientation 
cation (Ri). Ri, is local value at the inflection point. 
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FIG. 10. Neutral stability curve shift for stable stratification of Tolhnein-schlicting viscous 
instability. 
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Considerable difficulty was encountered in obtaining the eigenfunction behavior 
accurately for certain ranges of the parameters. Although the average of the 
eigenfunction corresponded well to the smooth fourth and second-order solutions, 
the sixth-order eigenfunctions were generally irregular for wavenumbers greater 
than 0.4 and E < .002, and exhibited great sensitivity in the vicinity of the critical 
layer, where V” = 0. When the step size was halved in the numerical calculation, 
no significant improvement was found. 

The sixth-order solution was found to contain spurious unstable modes. Each 
eigenvalue mode was checked for dependence on step size in the integration, and 
appearance in the corresponding limit equation. Several apparent solutions were 
discarded on this basis as being computational in origin. One possible source 
of spurious modes is the generation of internal waves. A quick check of the corre- 
sponding Brunt-Vaisala frequency would identify this possibility. 

IV. DISCUSSION 

The primary motivation for these solutions was to investigate the supercritical 
(with respect to E) behavior of the maximum growth rates for the inflection point 
instability mode of an Ekman velocity profile with respect to variation in the 
stratification parameter Ri. The principle conclusions involve the validity of the 
singular perturbation solutions obtained by letting Ri --t 0 and Pr + co, reducing 
the sixth-order equation to the fourth order, and the limit E -+ 0, yielding the 
second-order equation. The singular perturbation equation is generally faulted 
for “losing physical significance.” This only means that it is not able to satisfy 
as many boundary conditions as the higher order parent equation, and will fail 
to yield a physically realistic solution to the extent that the boundary conditions 
are important. The present second-order equation has the complication of a 
singularity preventing solutions at eigenvalues approaching neutral stability, 
since the critical layer at V = c, must invariably be passed through in the inte- 
gration. 

A significant difficulty in obtaining the numerical solutions arises from using 
inadequate step sizes in the integration, leading to spurious solutions on the one 
hand, and completely masking the physically real solution on the other. A spurious 
mode may appear, smoothly varying with changes in the parameters, yet changing 
significantly with a variation in step size. In such a case, one may either continue 
decreasing step size until the solution doesn’t change-with obvious practical 
limitations-or seek the source of the spurious mode, in the differencing method, 
the boundary conditions, or anomalous behavior with respect to a basic parameter. 
In some cases, the spurious mode can simply be ignored, if it doesn’t interfere 
with the investigation of the physically real mode when the shooting method is 
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employed. Usually, the real mode can be identified through predicted behavior 
with respect to parameter variation obtained from asymptotic solutions. For 
instance, a mode which behaved much like a convective mode in other respects, 
did not vanish as the unstable stratification became zero, and was subsequently 
identified as associated with the implied inflection point at the upper boundary. 
In addition, a mode which was readily determined at low wavenumbers was not 
resolved in the residue/eigenvalue relationship when wavenumbers increased at 
constant step size. Thus, a varying step size is needed when surveying over large 
wavenumber ranges. 

The shooting, or marching solution, allows direct tracing of one particular 
mode, thus minimizing the interference of the continuous spectrum solutions 
arising in the singular second order equation. Although the magnitude of the 
second-order eigenvalues differed significantly from those obtained in the higher 
order solutions, the mode was sufficiently close, and similarly behaved to be easily 
located with a nearby survey of boundary condition residues us input eigenvalues. 
Away from the critical regions, the second-order solutions are qualitatively 
similar to the higher order solutions. The importance of Ri at the inflection point 
is clearly indicated by second-order solutions, although the solution deteriorates 
rapidly with increasing Ri. The eigenfunctions in the vicinity of the maximum 
growth rate are well behaved and representative of the higher order solutions 
(Figs. 3, 7). The second-order solutions possess a characteristic maximum in 
magnitude and phase change at low elevations (z < 1.0). This feature is damped 
and smoothed in the viscous solutions. The fourth-order solutions well represent 
the sixth-order solutions in the Ri + 0, Pr + cc limit confirming that this is not 
a singular perturbation limit. 

The discrepency between critical values of 01 and E for maximum growth rate 
between the second-order and the fourth- and sixth-order solutions apparently 
must be ascribed to the relative freedom allowed in the second-order solution. 
Due to the singular nature of the second-order equation, the results obtained from 
second order are reliable only for cases with sufficiently large growth rate. On the 
other hand, the accuracy of the higher order equations depends on the step size 
as well as the E number. The step size must be reduced as E decreases in order to 
orthonormalize the vectors with sufficient accuracy. Thus, although the higher 
order equations indicate independence of E for very small values, the lower 
order equation does not reproduce this solution. Hence, the solution is qualitatively 
an asymptotic solution, but there exist quantitative distortions due to the reduced 
number of boundary conditions satisfied by the second-order equation. 

In all cases, the inner boundary conditions could be satisfied to almost arbitrarily 
small tolerances, 1O-5 error usually being used. One of the main weaknesses of 
the shooting method is the difficulty in attaining convergence in the root finding 
scheme without accurate initial guesses for the eigenvalue. The use of the CDC’s 
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Graphic Terminal greatly facilitated this process. The procedure used was to 
select three ci values, a cTmin and a c, increment. Then “shoot” an array of values, 
plotting the three resulting curves on a residue grid (Fig. 11). Visual interpolation 
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FIG. 11. Typical computer plot of boundary condition residue Y for array of 90 eigenvalues c. 
Interpolated eigenvalue to produce Aitkin process convergence, c = (0.430; 0.039). 

toward zero residue would be made until the automatic root finder (Aitkin method) 
could be used. 

The following conclusions can be made based on the results: 

(1) The E + 0 limit equation exhibits singular behavior which greatly 
restricts any numerical surveys of the inflection point instability mode in the 
vicinity of the neutral stability curve and the critical layer (V - c = 0). In addi- 
tion, although a mode which appears to be the asymptotic limit of the higher order 
solution appears, it has significantly different parameters for maximum growth 
rates, e.g., second-order 01, = .65, E, = 5” whereas fourth- and sixth-order 
a, = .5, E, = 18”. 

(2) The addition of viscosity (finite E) removes the singular nature of the 
governing eigenvalue equation and quantitatively alters the solution. However, 
these solutions appear to be independent of E for E < .002. The step size depen- 
dence upon E limits E > 10-4. 
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(3) The relative independence with respect to E of the fourth- and sixth-order 
solutions indicates that the small E condition can still be used to justify neglect 
of the Coriolis term-and hence the eight order equations-for E < .002. 

(4) For investigation of a particular eigensolution with respect to variations 
of the problem parameters in the supercritical range of one of the parameters, 
the shooting method is more practical than the matrix method, which produces 
all of the eigenvalues each time. However, the shooting method is not well adapted 
to surveying for unknown eigenvalues. The best compromise is apparently an 
initial search using a matrix solution, switching to a shooting method for detailed 
modal behavior. 
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